Vulkan 逻辑设备与队列,在选择要使用的物理设备之后,我们需要设置一个逻辑设备用于交互。逻辑设备创建过程与instance创建过程类似,也需要描述我们需要使用的功能。因为我们已经查询过哪些队列簇可用,在这里需要进一步为逻辑设备创建具体类型的命令队列。如果有不同的需求,也可以基于同一个物理设备创建多个逻辑设备。
首先添加一个新的类成员来存储逻辑设备句柄。
VkDevice device;
接下来创建一个新的函数createLogicalDevice,并在initVulkan函数中调用,以创建逻辑设备。
void initVulkan() {
createInstance();
setupDebugCallback();
pickPhysicalDevice();
createLogicalDevice();
}void createLogicalDevice() {}
指定创建的队列
创建逻辑设备需要在结构体中明确具体的信息,首先第一个结构体VkDeviceQueueCreateInfo。这个结构体描述队列簇中预要申请使用的队列数量。现在我们仅关心具备图形能力的队列。
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = indices.graphicsFamily;
queueCreateInfo.queueCount = 1;
当前可用的驱动程序所提供的队列簇只允许创建少量的队列,并且很多时候没有必要创建多个队列。这是因为可以在多个线程上创建所有命令缓冲区,然后在主线程一次性的以较低开销的调用提交队列。
Vulkan
允许使用0.0到1.0之间的浮点数分配队列优先级来影响命令缓冲区执行的调用。即使只有一个队列也是必须的:
float queuePriority = 1.0f;
queueCreateInfo.pQueuePriorities = &queuePriority;
指定使用的设备特性
下一个要明确的信息有关设备要使用的功能特性。这些是我们在上一节中用vkGetPhysicalDeviceFeatures查询支持的功能,比如geometry shaders。现在我们不需要任何特殊的功能,所以我们可以简单的定义它并将所有内容保留到VK_FALSE。一旦我们要开始用Vulkan做更多的事情,我们会回到这个结构体,进一步设置。
VkPhysicalDeviceFeatures deviceFeatures = {};
创建逻辑设备
使用前面的两个结构体,我们可以填充VkDeviceCreateInfo结构。
VkDeviceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
首先添加指向队列创建信息的结构体和设备功能结构体:
createInfo.pQueueCreateInfos = &queueCreateInfo;
createInfo.queueCreateInfoCount = 1;createInfo.pEnabledFeatures = &deviceFeatures;
结构体其余的部分与VkInstanceCreateInfo相似,需要指定扩展和validation layers
,总而言之这次不同之处是为具体的设备设置信息。
设置具体扩展的一个案例是VK_KHR_swapchain,它允许将来自设备的渲染图形呈现到Windows
。系统中的Vulkan
设备可能缺少该功能,例如仅仅支持计算操作。我们将在交换链章节中展开这个扩展。
就像之前validation layers
小节中提到的,允许为instance
开启validation layers
,现在我们将为设备开启validation layers
,而不需要为设备指定任何扩展。
createInfo.enabledExtensionCount = 0;if (enableValidationLayers) {
createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
createInfo.ppEnabledLayerNames = validationLayers.data();
} else {
createInfo.enabledLayerCount = 0;
}
就这样,我们现在可以通过调用vkCreateDevice函数来创建实例化逻辑设备。
if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
throw std::runtime_error("failed to create logical device!");
}
这些参数分别是包含具体队列使用信息的物理设备,可选的分配器回调指针以及用于存储逻辑设备的句柄。与instance
创建类似,此调用可能由于启用不存在的扩展或者指定不支持的功能,导致返回错误。
在cleanup函数中逻辑设备需要调用vkDestroyDevice销毁:
void cleanup() {
vkDestroyDevice(device, nullptr);
...
}
逻辑设备不与instance
交互,所以参数中不包含instance
。
检索队列处理
这些队列与逻辑设备自动的一同创建,但是我们还没有一个与它们进行交互的句柄。在这里添加一个新的类成员来存储图形队列句柄:
VkQueue graphicsQueue;
设备队列在设备被销毁的时候隐式清理,所以我们不需要在cleanup函数中做任何操作。
我们可以使用vkGetDeviceQueue函数来检测每个队列簇中队列的句柄。参数是逻辑设备,队列簇,队列索引和存储获取队列变量句柄的指针。因为我们只是从这个队列簇创建一个队列,所以需要使用索引 0。
vkGetDeviceQueue(device, indices.graphicsFamily, 0, &graphicsQueue);
在成功获取逻辑设备和队列句柄后,我们可以通过显卡做一些实际的事情了,在接下来的几章节中,我们会设置资源并将相应的结果提交到窗体系统。
源代码
// logical_device.cpp
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>#include <iostream>
#include <stdexcept>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <optional>const int WIDTH = 800;
const int HEIGHT = 600;const std::vector<const char*> validationLayers = {
"VK_LAYER_KHRONOS_validation"
};#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endifVkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
if (func != nullptr) {
return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
} else {
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
auto func = (PFN_vkDestroyDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
if (func != nullptr) {
func(instance, debugMessenger, pAllocator);
}
}struct QueueFamilyIndices {
std::optional<uint32_t> graphicsFamily; bool isComplete() {
return graphicsFamily.has_value();
}
};class HelloTriangleApplication {
public:
void run() {
initWindow();
initVulkan();
mainLoop();
cleanup();
}private:
GLFWwindow* window; VkInstance instance;
VkDebugUtilsMessengerEXT debugMessenger; VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
VkDevice device; VkQueue graphicsQueue; void initWindow() {
glfwInit(); glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE); window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
} void initVulkan() {
createInstance();
setupDebugMessenger();
pickPhysicalDevice();
createLogicalDevice();
} void mainLoop() {
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
}
} void cleanup() {
vkDestroyDevice(device, nullptr); if (enableValidationLayers) {
DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
} vkDestroyInstance(instance, nullptr); glfwDestroyWindow(window); glfwTerminate();
} void createInstance() {
if (enableValidationLayers && !checkValidationLayerSupport()) {
throw std::runtime_error("validation layers requested, but not available!");
} VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Hello Triangle";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "No Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0; VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = &appInfo; auto extensions = getRequiredExtensions();
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
createInfo.ppEnabledExtensionNames = extensions.data(); VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo;
if (enableValidationLayers) {
createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
createInfo.ppEnabledLayerNames = validationLayers.data(); populateDebugMessengerCreateInfo(debugCreateInfo);
createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*) &debugCreateInfo;
} else {
createInfo.enabledLayerCount = 0; createInfo.pNext = nullptr;
} if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
throw std::runtime_error("failed to create instance!");
}
} void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
createInfo.pfnUserCallback = debugCallback;
} void setupDebugMessenger() {
if (!enableValidationLayers) return; VkDebugUtilsMessengerCreateInfoEXT createInfo;
populateDebugMessengerCreateInfo(createInfo); if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
throw std::runtime_error("failed to set up debug messenger!");
}
} void pickPhysicalDevice() {
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if (deviceCount == 0) {
throw std::runtime_error("failed to find GPUs with Vulkan support!");
} std::vector<VkPhysicalDevice> devices(deviceCount);
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); for (const auto& device : devices) {
if (isDeviceSuitable(device)) {
physicalDevice = device;
break;
}
} if (physicalDevice == VK_NULL_HANDLE) {
throw std::runtime_error("failed to find a suitable GPU!");
}
} void createLogicalDevice() {
QueueFamilyIndices indices = findQueueFamilies(physicalDevice); VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = indices.graphicsFamily.value();
queueCreateInfo.queueCount = 1; float queuePriority = 1.0f;
queueCreateInfo.pQueuePriorities = &queuePriority; VkPhysicalDeviceFeatures deviceFeatures = {}; VkDeviceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.pQueueCreateInfos = &queueCreateInfo;
createInfo.queueCreateInfoCount = 1; createInfo.pEnabledFeatures = &deviceFeatures; createInfo.enabledExtensionCount = 0; if (enableValidationLayers) {
createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
createInfo.ppEnabledLayerNames = validationLayers.data();
} else {
createInfo.enabledLayerCount = 0;
} if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
throw std::runtime_error("failed to create logical device!");
} vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
} bool isDeviceSuitable(VkPhysicalDevice device) {
QueueFamilyIndices indices = findQueueFamilies(device); return indices.isComplete();
} QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
QueueFamilyIndices indices; uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr); std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data()); int i = 0;
for (const auto& queueFamily : queueFamilies) {
if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
indices.graphicsFamily = i;
} if (indices.isComplete()) {
break;
} i++;
} return indices;
} std::vector<const char*> getRequiredExtensions() {
uint32_t glfwExtensionCount = 0;
const char** glfwExtensions;
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount); if (enableValidationLayers) {
extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
} return extensions;
} bool checkValidationLayerSupport() {
uint32_t layerCount;
vkEnumerateInstanceLayerProperties(&layerCount, nullptr); std::vector<VkLayerProperties> availableLayers(layerCount);
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data()); for (const char* layerName : validationLayers) {
bool layerFound = false; for (const auto& layerProperties : availableLayers) {
if (strcmp(layerName, layerProperties.layerName) == 0) {
layerFound = true;
break;
}
} if (!layerFound) {
return false;
}
} return true;
} static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl; return VK_FALSE;
}
};int main() {
HelloTriangleApplication app; try {
app.run();
} catch (const std::exception& e) {
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
} return EXIT_SUCCESS;
}
过程再细一些就好了
谢谢你的关注,我们后面会增加新的内容,争取把每个内容说透,欢迎你随时提出宝贵的意见!