Vulkan 物理设备与队列

Vulkan 物理设备与队列,通过VkInstance初始化Vulkan后,我们需要在系统中查找并选择一个支持我们所需功能的显卡。实际上,我们可以选择任意数量的显卡并同时使用他们,但在本小节中,我们简单的设定选择规则,即将查找到的第一个图形卡作为我们适合的物理设备。

选择物理设备

通过VkInstance初始化Vulkan后,我们需要在系统中查找并选择一个支持我们所需功能的显卡。实际上,我们可以选择任意数量的显卡并同时使用他们,但在本小节中,我们简单的设定选择规则,即将查找到的第一个图形卡作为我们适合的物理设备。
Vulkan 物理设备与队列
我们添加函数pickPhysicalDevice并在initVulkan函数中调用。

void initVulkan() {
    createInstance();
    setupDebugCallback();
    pickPhysicalDevice();
}void pickPhysicalDevice() {}

最终我们选择的图形显卡存储在类成员VkPhysicalDevice句柄中。当VkInstance销毁时,这个对象将会被隐式销毁,所以我们并不需要在cleanup函数中做任何操作。

VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;

关于获取图形卡列表的方式与获得扩展列表的方式类似。

uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

如果Vulkan支持的设备数为0,那么没有任何意义进行下一步,我们选择抛出异常。

if (deviceCount == 0) {
    throw std::runtime_error("failed to find GPUs with Vulkan support!");
}

否则我们分配数组存储所有VkPhysicalDevice的句柄。

std::vector<VkPhysicalDevice> devices(deviceCount);
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

现在我们需要对它们进行评估,检查它们是否适合我们要执行的操作,因为并不是所有的显卡功能一致。为此我们添加一个新的函数:

bool isDeviceSuitable(VkPhysicalDevice device) {
    return true;
}

我们将检查是否有任何物理设备符合我们的功能需求。

for (const auto& device : devices) {
    if (isDeviceSuitable(device)) {
        physicalDevice = device;
        break;
    }
}if (physicalDevice == VK_NULL_HANDLE) {
    throw std::runtime_error("failed to find a suitable GPU!");
}

下一节我们介绍isDeviceSuitable函数,并检查第一个需要满足的功能。在后续的小节中,我们将开始使用更多的Vulkan功能,我们会扩展此功能函数以满足更多的检查条件。

设备需求检测

评估合适的设备我们可以通过遍历一些细节来完成。基本的设备属性像name, type以及Vulkan版本都可以通过vkGetPhysicalDeviceProperties来遍历得到。

VkPhysicalDeviceProperties deviceProperties;
vkGetPhysicalDeviceProperties(device, &deviceProperties);

可以使用vkGetPhysicalDeviceFeatures查询对纹理压缩,64位浮点数和多视图渲染(VR非常有用)等可选功能的支持:

VkPhysicalDeviceFeatures deviceFeatures;
vkGetPhysicalDeviceFeatures(device, &deviceFeatures);

更多遍历物理设备细节的信息,诸如设备内存、队列簇我们将会在后续小节讨论。

例如,我们假设我们的应用程序仅适用于支持geometry shaders的专用显卡。那么isDeviceSuitable函数将如下所示:

bool isDeviceSuitable(VkPhysicalDevice device) {
    VkPhysicalDeviceProperties deviceProperties;
    VkPhysicalDeviceFeatures deviceFeatures;
    vkGetPhysicalDeviceProperties(device, &deviceProperties);
    vkGetPhysicalDeviceFeatures(device, &deviceFeatures);    return deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU &&
           deviceFeatures.geometryShader;
}

为了避免纯粹的单一的判断一个设备是否合适,尤其是当你发现多个设备都合适的条件下,你也可以给每一个设备做权值,选择最高的一个。这样,可以通过给予更高权值获取定制化的图形设备,但如果没有一个可用的设备,可以回滚到集成图形设备。你可以按照如下方式实现:

#include <map>...void pickPhysicalDevice() {
    ...    // Use an ordered map to automatically sort candidates by increasing score
    std::multimap<int, VkPhysicalDevice> candidates;    for (const auto& device : devices) {
        int score = rateDeviceSuitability(device);
        candidates.insert(std::make_pair(score, device));
    }    // Check if the best candidate is suitable at all
    if (candidates.rbegin()->first > 0) {
        physicalDevice = candidates.rbegin()->second;
    } else {
        throw std::runtime_error("failed to find a suitable GPU!");
    }
}int rateDeviceSuitability(VkPhysicalDevice device) {
    ...    int score = 0;    // Discrete GPUs have a significant performance advantage
    if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) {
        score += 1000;
    }    // Maximum possible size of textures affects graphics quality
    score += deviceProperties.limits.maxImageDimension2D;    // Application can't function without geometry shaders
    if (!deviceFeatures.geometryShader) {
        return 0;
    }    return score;
}

我们不需要在小节内实现所有内容,但我们可以了解如何选择图形设备的过程。当然,我们也可以显示图形设备的名称列表,让用户选择。

因为我们刚刚开始,Vulkan的支持是我们唯一需要的,在这里假设任何GPU都可以:

bool isDeviceSuitable(VkPhysicalDevice device) {
    return true;
}

在下一小节中,我们将会讨论第一个真正需要检查的设备功能。

队列族

之前已经简要的介绍过,几乎所有的Vulkan操作,从绘图到上传纹理,都需要将命令提交到队列中。有不同类型的队列来源于不同的队列簇,每个队列簇只允许部分commands。例如,可以有一个队列簇,只允许处理计算commands或者只允许内存传输commands:

我们需要检测设备中支持的队列簇,其中哪一个队列簇支持我们想要的commands。为此我们添加一个新的函数findQueueFamilies来查找我们需要的队列簇。现在我们只会寻找一个支持图形commands队列簇,但是我们可以在稍后的小节中扩展更多的内容。
Vulkan 物理设备与队列

此函数返回满足某个属性的队列簇索引。定义结构体,其中索引-1表示”未找到”:

struct QueueFamilyIndices {
    int graphicsFamily = -1;    bool isComplete() {
        return graphicsFamily >= 0;
    }
};

现在我们实现findQueueFamilies函数:

QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
    QueueFamilyIndices indices;    ...    return indices;
}

获取队列簇的列表函数为vkGetPhysicalDeviceQueueFamilyProperties:

uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

有关队列簇,结构体VkQueueFamilyProperties包含了具体信息,包括支持的操作类型和基于当前队列簇可以创建的有效队列数。我们至少需要找到一个支持VK_QUEUE_GRAPHICS_BIT的队列簇。

int i = 0;
for (const auto& queueFamily : queueFamilies) {
    if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
        indices.graphicsFamily = i;
    }    if (indices.isComplete()) {
        break;
    }    i++;
}

现在我们有了比较理想的队列簇查询功能,我们可以在isDeviceSuitable函数中使用,确保物理设备可以处理我们需要的命令:

bool isDeviceSuitable(VkPhysicalDevice device) {
    QueueFamilyIndices indices = findQueueFamilies(device);    return indices.isComplete();
}

很好,我们已经找到了我们需要的物理设备,在下一个小节我们会讨论逻辑设备。

源代码

//physical_device_selection.cpp
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>#include <iostream>
#include <stdexcept>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <optional>const int WIDTH = 800;
const int HEIGHT = 600;const std::vector<const char*> validationLayers = {
    "VK_LAYER_KHRONOS_validation"
};#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endifVkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
    auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
    if (func != nullptr) {
        return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
    } else {
        return VK_ERROR_EXTENSION_NOT_PRESENT;
    }
}void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
    auto func = (PFN_vkDestroyDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
    if (func != nullptr) {
        func(instance, debugMessenger, pAllocator);
    }
}struct QueueFamilyIndices {
    std::optional<uint32_t> graphicsFamily;    bool isComplete() {
        return graphicsFamily.has_value();
    }
};class HelloTriangleApplication {
public:
    void run() {
        initWindow();
        initVulkan();
        mainLoop();
        cleanup();
    }private:
    GLFWwindow* window;    VkInstance instance;
    VkDebugUtilsMessengerEXT debugMessenger;    VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;    void initWindow() {
        glfwInit();        glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
        glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);        window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
    }    void initVulkan() {
        createInstance();
        setupDebugMessenger();
        pickPhysicalDevice();
    }    void mainLoop() {
        while (!glfwWindowShouldClose(window)) {
            glfwPollEvents();
        }
    }    void cleanup() {
        if (enableValidationLayers) {
            DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
        }        vkDestroyInstance(instance, nullptr);        glfwDestroyWindow(window);        glfwTerminate();
    }    void createInstance() {
        if (enableValidationLayers && !checkValidationLayerSupport()) {
            throw std::runtime_error("validation layers requested, but not available!");
        }        VkApplicationInfo appInfo = {};
        appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
        appInfo.pApplicationName = "Hello Triangle";
        appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.pEngineName = "No Engine";
        appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.apiVersion = VK_API_VERSION_1_0;        VkInstanceCreateInfo createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
        createInfo.pApplicationInfo = &appInfo;        auto extensions = getRequiredExtensions();
        createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
        createInfo.ppEnabledExtensionNames = extensions.data();        VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo;
        if (enableValidationLayers) {
            createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
            createInfo.ppEnabledLayerNames = validationLayers.data();            populateDebugMessengerCreateInfo(debugCreateInfo);
            createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*) &debugCreateInfo;
        } else {
            createInfo.enabledLayerCount = 0;            createInfo.pNext = nullptr;
        }        if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
            throw std::runtime_error("failed to create instance!");
        }
    }    void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
        createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
        createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
        createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
        createInfo.pfnUserCallback = debugCallback;
    }    void setupDebugMessenger() {
        if (!enableValidationLayers) return;        VkDebugUtilsMessengerCreateInfoEXT createInfo;
        populateDebugMessengerCreateInfo(createInfo);        if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
            throw std::runtime_error("failed to set up debug messenger!");
        }
    }    void pickPhysicalDevice() {
        uint32_t deviceCount = 0;
        vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);        if (deviceCount == 0) {
            throw std::runtime_error("failed to find GPUs with Vulkan support!");
        }        std::vector<VkPhysicalDevice> devices(deviceCount);
        vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());        for (const auto& device : devices) {
            if (isDeviceSuitable(device)) {
                physicalDevice = device;
                break;
            }
        }        if (physicalDevice == VK_NULL_HANDLE) {
            throw std::runtime_error("failed to find a suitable GPU!");
        }
    }    bool isDeviceSuitable(VkPhysicalDevice device) {
        QueueFamilyIndices indices = findQueueFamilies(device);        return indices.isComplete();
    }    QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
        QueueFamilyIndices indices;        uint32_t queueFamilyCount = 0;
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);        std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());        int i = 0;
        for (const auto& queueFamily : queueFamilies) {
            if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
                indices.graphicsFamily = i;
            }            if (indices.isComplete()) {
                break;
            }            i++;
        }        return indices;
    }    std::vector<const char*> getRequiredExtensions() {
        uint32_t glfwExtensionCount = 0;
        const char** glfwExtensions;
        glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);        std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);        if (enableValidationLayers) {
            extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
        }        return extensions;
    }    bool checkValidationLayerSupport() {
        uint32_t layerCount;
        vkEnumerateInstanceLayerProperties(&layerCount, nullptr);        std::vector<VkLayerProperties> availableLayers(layerCount);
        vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());        for (const char* layerName : validationLayers) {
            bool layerFound = false;            for (const auto& layerProperties : availableLayers) {
                if (strcmp(layerName, layerProperties.layerName) == 0) {
                    layerFound = true;
                    break;
                }
            }            if (!layerFound) {
                return false;
            }
        }        return true;
    }    static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
        std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;        return VK_FALSE;
    }
};int main() {
    HelloTriangleApplication app;    try {
        app.run();
    } catch (const std::exception& e) {
        std::cerr << e.what() << std::endl;
        return EXIT_FAILURE;
    }    return EXIT_SUCCESS;
}

赞(12)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

最新文章